17篇注意力机制PyTorch实现包含MLP、Re-Parameter系列热门论文

  注意力(Attention)机制最早在计算机视觉中应用,后来又在 NLP 领域发扬光大,该机制将有限的注意力集中在重点信息上,从而节省资源,快速获得最有效的信息。

  经过几年的发展,领域内产生了众多的注意力机制论文研究,这些工作在 CV、NLP 领域取得了较好的效果。近日,在 GitHub 上,有研究者介绍了 17 篇关于注意力机制论文的 PyTorch 的代码实现以及使用方法。

  MLP(多层感知机)系列中,包含4篇论文 Pytorch 实现方式,论文如下:

  总结来说,该项目共用 Pytorch 实现了 17 篇注意力机制论文。每篇论文包括题目(可直接链接到论文)、网络架构、代码。示例如下:

  每日头条、业界资讯、热点资讯、八卦爆料,全天跟踪微博播报。各种爆料、内幕、花边、资讯一网打尽。www.hk0099.com。百万互联网粉丝互动参与,TechWeb官方微博期待您的关注。16688开奖现场彩图